Asian Dust Detection from the Satellite Observations of Moderate Resolution Imaging Spectroradiometer (MODIS)

نویسنده

  • Xuepeng Zhao
چکیده

Asian dusts exert significant influences on regional air quality, weather, and climate. Detection of these highly variable aerosol events is challenging due to several factors, such as short lifetime, multiple scales, and strong interactions with local and regional surface and meteorological conditions. Since dust particles can directly alter solar and earth radiation in both visible (VS) and infrared (IR) spectral regions through scattering and absorption processes, both VS and IR remote sensing techniques can be used to detect dust plumes in the atmosphere. A dust detection system for multi-channel satellite imagers was applied in this study. The detection is based on the analysis of reflectance (or radiance) in VS channels or brightness temperature (BT) in IR channels. The magnitude of the difference in reflectance and/or BTs in selected channels due to dust is used to infer the signature of the dust particles. Descriptions of the detection system and its application for Asian dust using the Moderate-resolution Imaging Spectroradiometer (MODIS) satellite measurements are provided. The performance of the algorithm for Asian dust detection and its usefulness for monitoring the outbreaks and dispersion of Asian dust events were emphasized in the current study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra

[1] Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth’s Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean L...

متن کامل

Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean

[1] Meteorological observations, in situ data, and satellite images of dust episodes were used already in the 1970s to estimate that 100 Tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and are deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but it deteriorates ai...

متن کامل

Dust Detection and Optical Depth Retrieval Using MSG SEVIRI Data

Thanks to its observational frequency of 15 min, the Meteosat Second Generation (MSG) geostationary satellite offers a great potential to monitor dust storms. To explore this potential, an algorithm for the detection and the retrieval of dust aerosol optical properties has been tested. This is a multispectral algorithm based on visible and infrared data which has been applied to 15 case studies...

متن کامل

Detection of Asian Dust Storm Using MODIS Measurements

Every year, a large number of aerosols are released from dust storms into the atmosphere, which may have potential impacts on the climate, environment, and air quality. Detecting dust aerosols and monitoring their movements and evolutions in a timely manner is a very significant task. Satellite remote sensing has been demonstrated as an effective means for observing dust aerosols. In this paper...

متن کامل

Satellite-based assessment of cloud-free net radiative effect of dust aerosols over the Atlantic Ocean

[1] Using eighteen months (June–August, 2000–2005) of spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth’s Radiant Energy System (CERES) data from the Terra satellite over the Atlantic Ocean [10W–60W, 0–30N], we first separate the dust aerosol optical thickness at 0.55 mm (AOT) from the total column MODIS AOT. We then calculate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012